DESIGN OF R.C. BEAM - ACI 318-25
1.0 INPUT DATA
Material Properties (ACI 318-25)
fc' = MPa Specified compressive strength of concrete [ACI
19.2.2]
fy = MPa Specified yield strength of reinforcement [ACI
20.2.2]
γc = kN/m³ Unit weight of concrete
Es = MPa Modulus of elasticity of steel
Figure 1: Geometry
RC Beam Dimensions
Load Factors and Strength Reduction Factors
φtension = Strength reduction factor for tension-controlled
sections [ACI 21.2.2]
φshear = Strength reduction factor for shear [ACI 21.2.3]
λ = Modification factor for concrete density [ACI 19.2.4]
Section Dimensions
l =
mm Clear span of beam [ACI 8.7]
h =
mm Overall depth of beam
b =
mm Width of beam
Loads
wD = kN/m Service dead load
wL = kN/m Service live load
M =
kN·m Factored moment at midspan
Vu = kN Factored shear at support
Ma = kN·m Service moment for deflection check
Assumed Reinforcement
cc = mm Clear cover to reinforcement [ACI 20.6]
φmain = mm Main bar diameter
nmain = Number of main bars
φcomp = mm Compression bar diameter (if needed)
ncomp = Number of compression bars (if needed)
φstirrup = mm Stirrup bar diameter
s =
mm Stirrup spacing
cagg,max = mm Maximum aggregate size [ACI 26.4.2.1]
2.0 CALCULATIONS
2.1 Design for Flexure
Effective depth to tension steel
d = h − cc −
φstirrup − φmain/2
d = 450 - 40 - 10 - 20/2 = 380.00 mm
Effective depth to compression steel
d' = cc +
φcomp/2
d' = 40 + 16/2 = 48.00 mm
Provided tension reinforcement
As,prov =
nmain·(φmain/2)²·π
As,prov = 3×(20/2)²×π = 942.48 mm²
ρ = As,prov/(b·d)
ρ = 942.48/(250×380) = 0.0099
Check minimum reinforcement requirement [ACI 9.6.1.2]
ρmin = max(3·√(fc')/fy,
200/fy) Units in psi
ρmin = max(3×√(4352)/60924, 200/60924)
= 0.0018
check_ρmin = OK
(ρ = 0.0099 ≥ ρmin
= 0.0018)
Check maximum reinforcement limit [ACI 9.6.2.1]
β1 = 0.85 (for f'c ≤ 30 MPa)
For normal-weight concrete [ACI 22.2.2.4.3]
ρb =
0.85·β1·fc'/fy ·
Es/(Es + fy) Balanced
reinforcement ratio
ρb = 0.85×0.85×30/420 ×
200000/(200000+420) = 0.0025
ρmax = 0.85·ρb Maximum
reinforcement for tension-controlled sections
ρmax = 0.85×0.0025 = 0.0021
check_ρmax = FAIL
(ρ = 0.0099 ≤ ρmax
= 0.0021)
Check if compression steel is required
Compression steel IS required (ρ > ρmax)
Calculate compression steel requirement
ρcomp = ρ − ρmax
ρcomp = 0.0099 - 0.0021 = 0.0078
As',req =
ρcomp·b·d
As',req = 0.0078×250×380 =
740.63 mm²
Provide compression bars (e.g. 2No.#16)
As',prov =
ncomp·(φcomp/2)²·π
As',prov = 2×(16/2)²×π =
402.12 mm²
check_As' = FAIL
(As',prov = 402.12
< As',req = 740.63 mm²)
Calculate nominal moment strength with compression steel
a =
As,prov·fy/(0.85·fc'·b)
a = 942.48×420/(0.85×30×250) = 62.42 mm
Mn =
As,prov·fy·(d − a/2)
Mn = 942.48×420×(380 - 62.42/2) = 136082976 N·mm
Calculate design moment strength
φMn = φtension·Mn
φMn = 0.9×136082976 = 122474.68 kN·mm = 122.47 kN·m
Check flexural strength
check_flexure = OK
(φMn = 122.47 ≥
M
= 112.50 kN·m)
2.2 Design for Shear - ENHANCED ACI 318-25 PROVISIONS
Shear demand
vu = Vu/(b·d)
vu = 75000/(250×380) = 0.789 MPa
Concrete shear strength [ACI 318-25 Section 22.5.5.1]
vc = 0.17·λ·λs·√(fc')·√(1 +
βc) For beam, βc = 0
λs = √(2/(1 + 0.004·d)) Size effect
factor [ACI 22.5.5.1.3]
λs = √(2/(1 + 0.004×380)) = 0.97
vc =
0.17×λ×λs×√(fc')
vc = 0.17×1.0×0.97×√(30) = 0.90 MPa
vc,min = λ·√(fc')
Minimum concrete shear stress [ACI 22.5.5.2]
vc,min = 1.0×√(30) = 5.477 MPa
vc,design = max(vc,
vc,min)
vc,design = max(0.90, 5.477) =
5.477 MPa
Design concrete shear strength
φv·vc,design =
φshear·vc,design
φv·vc,design = 0.75×5.477 = 4.108
MPa
Design for shear reinforcement
check_shear = OK
(vu = 0.789 ≤
φv·vc,design = 4.108 MPa)
Shear reinforcement design
Vsv,req = Vu −
φv·vc,design·b·d
Vsv,req = 75 -
0.75×5.477×250×380/1000 = 121.1
kN
Asv,req =
Vsv,req·1000/(φshear·fy·d)
Asv,req = 121100/(0.75×420×380) =
1.01 mm²/mm = 1010 mm²/m
Provide stirrups (e.g. #10@150mm c/c)
Asv,prov =
2·(φstirrup/2)²·π/s
Asv,prov = 2×(10/2)²×π/150 =
2.09 mm²/mm = 2090 mm²/m
check_Asv = OK
(Asv,prov = 2090 ≥
Asv,req = 1010 mm²/m)
2.3 Serviceability - Deflection Check
Effective moment of inertia [ACI 24.2.3.5]
Ie =
min[(Mcr/Ma)³·Ig + [1 −
(Mcr/Ma)³]·Icr,
Ig]
Mcr =
fr·Ig/(yt)
fr = 0.62·λ·√(fc') Modulus of
rupture
fr = 0.62×1.0×√(30) = 3.40 MPa
Ig = b·h³/12
Ig = 250×450³/12 = 3785156250 mm⁴
yt = h/2 Distance from centroid to
extreme tension fiber
yt = 450/2 = 225 mm
Mcr = 3.40×3785156250/225 = 57156406 N·mm = 57.16 kN·m
Icr = n·As·(d −
c)² + b·c³/3
c = √[(n·As)² +
2·n·As·d] − n·As
Ec =
4700·√(fc')·√(γc/23.5)
Ec = 4700×√(30)×√(24/23.5) = 25740 MPa
n = Es/Ec
n = 200000/25740 = 7.77
c = √[(7.77×942.48)² + 2×7.77×942.48×380] − 7.77×942.48
= 39.16 mm
Icr = 7.77×942.48×(380-39.16)² +
250×39.16³/3 = 87709076 mm⁴
Service moment (user-provided for deflection check)
Ma = 78.13 (user input) kN·m
Ie = min((57.16/78.13)³×3785156250 +
[1−(57.16/78.13)³]×87709076, 3785156250) = 87709076 mm⁴
Deflection calculation (simple span, uniformly distributed load)
Δ = 5·(wD +
wL)·l⁴/(384·Ec·Ie)
Δ = 5×25×6000⁴/(384×25740×87709076) = 8.43 mm
Check deflection limits [ACI Table 24.2.2]
Allowable Δ = l/240 = 6000/240 = 25.00 mm
check_deflection = OK
(Δ = 8.43 ≤ Allowable = 25.00 mm)
2.4 Crack Control [ACI 24.3]
Calculate z-factor for beam
z =
β·hc·√(dc·A) [ACI
24.3.2]
β = d/(dc) = 380/(40+10+20/2) = 4.75
hc = cc + φstirrup +
φmain/2
hc = 40 + 10 + 20/2 = 60 mm
dc = hc
A = 2·dc·(b/nmain)
A = 2×60×(250/3) = 10000 mm²
z = 4.75×60×√(60×10000) = 36898 N/mm
check_crack = FAIL
(z = 36898 > 30000 N/mm for interior exposure)
2.5 Bar Spacing Requirements [ACI 25.2]
Minimum spacing requirements [ACI 25.2.1]
smin = max(φmain,
1.33·cagg,max, 25 mm)
smin = max(20, 1.33×19, 25) = 25.00 mm
check_smin = OK
(Spacing between bars ≥ 25.00 mm)
Maximum spacing for crack control [ACI 24.3.2]
smax,crack = min(12×dc,
300) mm For interior exposure with moderate corrosion risk
smax,crack = 300.00
mm
check_smax,crack = OK
(Provide adequate spacing for crack control)
Stirrup spacing check [ACI 9.7.6.2]
smax,stirrup = min(16×φmain,
d/2, 300) mm
smax,stirrup = 190.00
mm
check_sstirrup = OK
(s = 150 ≤
smax,stirrup
= 190.00 mm)
*** OUTPUT SUMMARY ***
Design Results
Effective depth, d = 380.00
mm
Provided tension steel, As,prov = 942.48 mm²
Required compression steel, As',req = 740.63 mm²
Provided compression steel, As',prov = 402.12 mm²
Reinforcement ratio, ρ = 0.0099
Design moment strength, φMn = 122.47 kN·m
Flexural strength check: OK
Compression steel check: FAIL - Increase compression steel
Shear stress, vu = 0.789 MPa
Design concrete shear strength, φv·vc,design =
4.108 MPa
Shear capacity check: CHECK
Calculated deflection, Δ = 8.43
mm
Allowable deflection = 25.00
mm
Deflection check: OK
Crack control check: FAIL - Increase cover or reduce spacing
Bar spacing check: OK
RESULTS
DESIGN FAILS - INCREASE COMPRESSION STEEL AND IMPROVE CRACK CONTROL