DESIGN OF R.C. BEAM

Design according to ACI 318-25
Back to Home

DESIGN OF R.C. BEAM - ACI 318-25

1.0 INPUT DATA

Material Properties (ACI 318-25)

fc' = MPa   Specified compressive strength of concrete [ACI 19.2.2]

fy = MPa   Specified yield strength of reinforcement [ACI 20.2.2]

γc = kN/m³   Unit weight of concrete

Es = MPa   Modulus of elasticity of steel

Figure 1: Geometry

Geometry Diagram

RC Beam Dimensions

Load Factors and Strength Reduction Factors

φtension =   Strength reduction factor for tension-controlled sections [ACI 21.2.2]

φshear =   Strength reduction factor for shear [ACI 21.2.3]

λ =   Modification factor for concrete density [ACI 19.2.4]

Section Dimensions

l = mm   Clear span of beam [ACI 8.7]

h = mm   Overall depth of beam

b = mm   Width of beam

Loads

wD = kN/m   Service dead load

wL = kN/m   Service live load

M = kN·m   Factored moment at midspan

Vu = kN   Factored shear at support

Ma = kN·m   Service moment for deflection check

Assumed Reinforcement

cc = mm   Clear cover to reinforcement [ACI 20.6]

φmain = mm   Main bar diameter

nmain =   Number of main bars

φcomp = mm   Compression bar diameter (if needed)

ncomp =   Number of compression bars (if needed)

φstirrup = mm   Stirrup bar diameter

s = mm   Stirrup spacing

cagg,max = mm   Maximum aggregate size [ACI 26.4.2.1]

2.0 CALCULATIONS

2.1 Design for Flexure

Effective depth to tension steel

d = hccφstirrupφmain/2
d = 450 - 40 - 10 - 20/2 = 380.00 mm

Effective depth to compression steel

d' = cc + φcomp/2
d' = 40 + 16/2 = 48.00 mm

Provided tension reinforcement

As,prov = nmain·(φmain/2)²·π
As,prov = 3×(20/2)²×π = 942.48 mm²
ρ = As,prov/(b·d)
ρ = 942.48/(250×380) = 0.0099

Check minimum reinforcement requirement [ACI 9.6.1.2]

ρmin = max(3·√(fc')/fy, 200/fy)   Units in psi
ρmin = max(3×√(4352)/60924, 200/60924) = 0.0018
check_ρmin = OK   (ρ = 0.0099ρmin = 0.0018)

Check maximum reinforcement limit [ACI 9.6.2.1]

β1 = 0.85 (for f'c ≤ 30 MPa)   For normal-weight concrete [ACI 22.2.2.4.3]
ρb = 0.85·β1·fc'/fy · Es/(Es + fy)   Balanced reinforcement ratio
ρb = 0.85×0.85×30/420 × 200000/(200000+420) = 0.0025
ρmax = 0.85·ρb   Maximum reinforcement for tension-controlled sections
ρmax = 0.85×0.0025 = 0.0021
check_ρmax = FAIL   (ρ = 0.0099ρmax = 0.0021)

Check if compression steel is required

Compression steel IS required (ρ > ρmax)

Calculate compression steel requirement

ρcomp = ρρmax
ρcomp = 0.0099 - 0.0021 = 0.0078
As',req = ρcomp·b·d
As',req = 0.0078×250×380 = 740.63 mm²
Provide compression bars (e.g. 2No.#16)
As',prov = ncomp·(φcomp/2)²·π
As',prov = 2×(16/2)²×π = 402.12 mm²
check_As' = FAIL   (As',prov = 402.12 < As',req = 740.63 mm²)

Calculate nominal moment strength with compression steel

a = As,prov·fy/(0.85·fc'·b)
a = 942.48×420/(0.85×30×250) = 62.42 mm
Mn = As,prov·fy·(da/2)
Mn = 942.48×420×(380 - 62.42/2) = 136082976 N·mm

Calculate design moment strength

φMn = φtension·Mn
φMn = 0.9×136082976 = 122474.68 kN·mm = 122.47 kN·m

Check flexural strength

check_flexure = OK   (φMn = 122.47M = 112.50 kN·m)

2.2 Design for Shear - ENHANCED ACI 318-25 PROVISIONS

Shear demand

vu = Vu/(b·d)
vu = 75000/(250×380) = 0.789 MPa

Concrete shear strength [ACI 318-25 Section 22.5.5.1]

vc = 0.17·λ·λs·√(fc')·√(1 + βc)   For beam, βc = 0
λs = √(2/(1 + 0.004·d))   Size effect factor [ACI 22.5.5.1.3]
λs = √(2/(1 + 0.004×380)) = 0.97
vc = 0.17×λ×λs×√(fc')
vc = 0.17×1.0×0.97×√(30) = 0.90 MPa
vc,min = λ·√(fc')   Minimum concrete shear stress [ACI 22.5.5.2]
vc,min = 1.0×√(30) = 5.477 MPa
vc,design = max(vc, vc,min)
vc,design = max(0.90, 5.477) = 5.477 MPa

Design concrete shear strength

φv·vc,design = φshear·vc,design
φv·vc,design = 0.75×5.477 = 4.108 MPa

Design for shear reinforcement

check_shear = OK   (vu = 0.789φv·vc,design = 4.108 MPa)

2.3 Serviceability - Deflection Check

Effective moment of inertia [ACI 24.2.3.5]

Ie = min[(Mcr/Ma)³·Ig + [1 − (Mcr/Ma)³]·Icr, Ig]
Mcr = fr·Ig/(yt)
fr = 0.62·λ·√(fc')   Modulus of rupture
fr = 0.62×1.0×√(30) = 3.40 MPa
Ig = b·h³/12
Ig = 250×450³/12 = 3785156250 mm⁴
yt = h/2   Distance from centroid to extreme tension fiber
yt = 450/2 = 225 mm
Mcr = 3.40×3785156250/225 = 57156406 N·mm = 57.16 kN·m
Icr = n·As·(dc)² + b·c³/3
c = √[(n·As)² + 2·n·As·d] − n·As
Ec = 4700·√(fc')·√(γc/23.5)
Ec = 4700×√(30)×√(24/23.5) = 25740 MPa
n = Es/Ec
n = 200000/25740 = 7.77
c = √[(7.77×942.48)² + 2×7.77×942.48×380] − 7.77×942.48 = 39.16 mm
Icr = 7.77×942.48×(380-39.16)² + 250×39.16³/3 = 87709076 mm⁴

Service moment (user-provided for deflection check)

Ma = 78.13 (user input) kN·m
Ie = min((57.16/78.13)³×3785156250 + [1−(57.16/78.13)³]×87709076, 3785156250) = 87709076 mm⁴

Deflection calculation (simple span, uniformly distributed load)

Δ = 5·(wD + wLl⁴/(384·Ec·Ie)
Δ = 5×25×6000⁴/(384×25740×87709076) = 8.43 mm

Check deflection limits [ACI Table 24.2.2]

Allowable Δ = l/240 = 6000/240 = 25.00 mm
check_deflection = OK   (Δ = 8.43 ≤ Allowable = 25.00 mm)

2.4 Crack Control [ACI 24.3]

Calculate z-factor for beam

z = β·hc·√(dc·A)   [ACI 24.3.2]
β = d/(dc) = 380/(40+10+20/2) = 4.75
hc = cc + φstirrup + φmain/2
hc = 40 + 10 + 20/2 = 60 mm
dc = hc
A = 2·dc·(b/nmain)
A = 2×60×(250/3) = 10000 mm²
z = 4.75×60×√(60×10000) = 36898 N/mm
check_crack = FAIL   (z = 36898 > 30000 N/mm for interior exposure)

2.5 Bar Spacing Requirements [ACI 25.2]

Minimum spacing requirements [ACI 25.2.1]

smin = max(φmain, 1.33·cagg,max, 25 mm)
smin = max(20, 1.33×19, 25) = 25.00 mm
check_smin = OK   (Spacing between bars ≥ 25.00 mm)

Maximum spacing for crack control [ACI 24.3.2]

smax,crack = min(12×dc, 300) mm   For interior exposure with moderate corrosion risk
smax,crack = 300.00 mm
check_smax,crack = OK   (Provide adequate spacing for crack control)

Stirrup spacing check [ACI 9.7.6.2]

smax,stirrup = min(16×φmain, d/2, 300) mm
smax,stirrup = 190.00 mm
check_sstirrup = OK   (s = 150smax,stirrup = 190.00 mm)

*** OUTPUT SUMMARY ***

Design Results

Effective depth, d = 380.00 mm

Provided tension steel, As,prov = 942.48 mm²

Required compression steel, As',req = 740.63 mm²

Provided compression steel, As',prov = 402.12 mm²

Reinforcement ratio, ρ = 0.0099

Design moment strength, φMn = 122.47 kN·m

Flexural strength check: OK

Compression steel check: FAIL - Increase compression steel

Shear stress, vu = 0.789 MPa

Design concrete shear strength, φv·vc,design = 4.108 MPa

Shear capacity check: CHECK

Calculated deflection, Δ = 8.43 mm

Allowable deflection = 25.00 mm

Deflection check: OK

Crack control check: FAIL - Increase cover or reduce spacing

Bar spacing check: OK

RESULTS

DESIGN FAILS - INCREASE COMPRESSION STEEL AND IMPROVE CRACK CONTROL