🏗️ Beam Analysis Calculators

Structural analysis tools for various beam configurations and loading conditions.
Back to Home

Simply Supported Beam with Concentrated Load

Beam Geometry
📋 Mathematical Formulas

Support Reactions:

V_A = P·b/L

V_B = P·a/L

where b = L - a

Shear Force V(x):

if(x ≤ a) → V_A

if(x > a) → -V_B

Bending Moment M(x):

if(x ≤ a) → V_A·x

if(x > a) → V_B·(L-x)

Deflection δ(x):

if(x ≤ a) → -P·b·x·(L²-b²-x²)/(6·E·I·L)

if(x > a) → -P·a·(L-x)·(2·L·x-x²-a²)/(6·E·I·L)

📐 Support Reactions

V_A: - kN

V_B: - kN

At x = 1.5m:

V(x): - kN

M(x): - kN⋅m

δ(x): - mm

Shear Force Diagram

Shear force distribution along beam length

Bending Moment Diagram

Bending moment distribution along beam length

Deflection Diagram

Beam deflection along length (mm)

Simply Supported Beam with 2-Concentrated Load

Beam Geometry
📋 Mathematical Formulas

Support Reactions:

V_A = [P₁·(L-a) + P₂·b]/L

V_B = [P₁·a + P₂·(L-b)]/L

Shear Force V(x):

if(x ≤ a) → V_A

if(a < x ≤ L-b) → V_A - P₁

if(x > L-b) → -V_B

Bending Moment M(x):

if(x ≤ a) → V_A·x

if(a < x ≤ L-b) → V_A·x - P₁·(x-a)

if(x > L-b) → V_B·(L-x)

📐 Support Reactions

V_A: - kN

V_B: - kN

At x = 1.25m:

V(x): - kN

M(x): - kN⋅m

Shear Force Diagram

Shear force distribution along beam length

Bending Moment Diagram

Bending moment distribution along beam length

Simply Supported Beam with Uniform Load

Beam Geometry
📋 Mathematical Formulas

Support Reactions:

V_A = w·L/2

V_B = w·L/2

Shear Force V(x):

V(x) = w·(L/2 - x)

Bending Moment M(x):

M(x) = w·x/2·(L - x)

Deflection δ(x):

δ(x) = -w·x·(L³-2·L·x²+x³)/(24·E·I)

📐 Support Reactions

V_A: - kN

V_B: - kN

At x = 1.5m:

V(x): - kN

M(x): - kN⋅m

δ(x): - mm

Shear Force Diagram

Shear force distribution along beam length

Bending Moment Diagram

Bending moment distribution along beam length

Deflection Diagram

Beam deflection along length (mm)

Simply Supported Beam with Partial Uniform Load

Geometry Diagram
📋 Mathematical Formulas

Support Reactions:

c = L - a - b

V_A = w·b·(2c + b)/(2L)

V_B = w·b·(2a + b)/(2L)

Shear Force V(x):

if(x ≤ a) → V_A

if(a < x ≤ a+b) → V_A - w·(x-a)

if(x > a+b) → -V_B

Bending Moment M(x):

if(x ≤ a) → V_A·x

if(a < x ≤ a+b) → V_A·x - (w/2)·(x-a)²

if(x > a+b) → V_B·(L-x)

📐 Support Reactions

V_A: - kN

V_B: - kN

At x = 1.5m:

V(x): - kN

M(x): - kN⋅m

Shear Force Diagram

Shear force distribution along beam length

Bending Moment Diagram

Bending moment distribution along beam length

Simply Supported Beam with Partial Uniform Load at Each End

Geometry Diagram
📋 Mathematical Formulas

Support Reactions:

b = L - a - c

V_A = [w₁·a·(2L-a) + w₂·c²]/(2L)

V_B = [w₂·c·(2L-c) + w₁·a²]/(2L)

Shear Force V(x):

if(x ≤ a) → V_A - w₁·x

if(a < x ≤ a+b) → V_A - w₁·a

if(x > a+b) → -(V_B - w₂·(L-x))

Bending Moment M(x):

if(x ≤ a) → V_A·x - w₁·x²/2

if(a < x ≤ a+b) → V_A·x - w₁·a·(2x-a)/2

if(x > a+b) → V_B·(L-x) - w₂·(L-x)²/2

ss="calc-info">
📐 Support Reactions

V_A: - kN

V_B: - kN

At x = 1.5m:

V(x): - kN

M(x): - kN⋅m

Shear Force Diagram

Shear force distribution along beam length

Bending Moment Diagram

Bending moment distribution along beam length

Simply Supported Beam with Load Increasing Uniformly to One End

Geometry Diagram
📋 Mathematical Formulas

Total Load:

W = (1/2)·L·w

Support Reactions:

V_A = W/3

V_B = 2·W/3

Shear Force V(x):

V(x) = W/3 - W·x²/L²

Bending Moment M(x):

M(x) = (W·x)·(L² - x²)/(3·L²)

Deflection δ(x):

δ(x) = -W·x·(3·x⁴ - 10·L²·x² + 7·L⁴)/(180·E·I·L²)

(negative = downward)

📐 Support Reactions

V_A: - kN

V_B: - kN

At x = 1.5m:

V(x): - kN

M(x): - kN⋅m

δ(x): - mm

Shear Force Diagram

Shear force distribution along beam length

Bending Moment Diagram

Bending moment distribution along beam length

Deflection Diagram

Beam deflection along length (mm)

Simply Supported Beam with Load Increasing Uniformly to Center

Geometry Diagram
📋 Mathematical Formulas

Total Load:

W = (1/2)·L·w

Support Reactions:

V_A = W/2

V_B = W/2

Shear Force V(x):

if(0 ≤ x ≤ L/2) → w·(L² - 4·x²)/(4·L)

if(x > L/2) → -w·(L² - 4·(L - x)²)/(4·L)

Bending Moment M(x):

if(0 ≤ x ≤ L/2) → (w·L·x/2)·(1/2 - 2·x²/(3·L²))

if(x > L/2) → (w·L·(L - x)/2)·(1/2 - 2·(L - x)²/(3·L²))

Deflection δ(x):

δ(x) = -W·x·(5·L² - 4·x²)²/(480·E·I·L²)

(negative = downward)

📐 Support Reactions

V_A: - kN

V_B: - kN

At x = 2.5m:

V(x): - kN

M(x): - kN⋅m

δ(x): - mm

Shear Force Diagram

Shear force distribution along beam length

Bending Moment Diagram

Bending moment distribution along beam length

Deflection Diagram

Beam deflection along length (mm)

Cantilever Beam with Uniform Load

Geometry Diagram
📋 Mathematical Formulas

Support Reaction:

V = w·L

Shear Force V(x):

V(x) = w·x

Bending Moment M(x):

M(x) = w·x²/2

Deflection δ(x):

δ(x) = -w·(x⁴ - 4·L³·x + 3·L⁴)/(24·E·I)

(negative = downward)

📐 Support Reactions

V: - kN

At x = 1.5m:

V(x): - kN

M(x): - kN⋅m

δ(x): - mm

Shear Force Diagram

Shear force distribution along beam length

Bending Moment Diagram

Bending moment distribution along beam length

Deflection Diagram

Beam deflection along length (mm)

Cantilever Beam with Concentrated Load

Geometry Diagram
📋 Mathematical Formulas

Distance Parameters:

b = L - a

Support Reaction:

V = P

Shear Force V(x):

if(0 ≤ x ≤ a) → 0

if(x > a) → V

Bending Moment M(x):

if(0 ≤ x ≤ a) → 0

if(x > a) → P·(x - a)

Deflection δ(x):

if(0 ≤ x ≤ a) → -P·b²·(3·L - 3·x - b)/(6·E·I)

if(x > a) → -P·(L - x)²·(3·b - L + x)/(6·E·I)

(negative = downward)

📐 Support Reactions

V: - kN

At x = 1.05m:

V(x): - kN

M(x): - kN⋅m

δ(x): - mm

Shear Force Diagram

Shear force distribution along beam length

Bending Moment Diagram

Bending moment distribution along beam length

Deflection Diagram

Beam deflection along length (mm)

Cantilever Beam with Load Increasing Uniformly to Fixed End

Geometry Diagram
📋 Mathematical Formulas

Total Load:

W = (1/2)·L·w

Support Reaction:

V = w·L/2

Shear Force V(x):

V(x) = w·x²/(2·L)

Bending Moment M(x):

M(x) = w·x³/(6·L)

Deflection δ(x):

δ(x) = -W·x²·(x⁵ + 5·L⁴·x + 4·L⁵)/(60·E·I·L²)

(negative = downward)

📐 Support Reactions

V: - kN

At x = 1.5m:

V(x): - kN

M(x): - kN⋅m

δ(x): - mm

Shear Force Diagram

Shear force distribution along beam length

Bending Moment Diagram

Bending moment distribution along beam length

Deflection Diagram

Beam deflection along length (mm)

Propped Beam with Uniform Load

Geometry Diagram
📋 Mathematical Formulas

Support Reactions:

V_A = 3·w·L/8

V_B = 5·w·L/8

Shear Force V(x):

V(x) = V_A - w·x

Bending Moment M(x):

M(x) = V_A·x - w·x²/2

Deflection δ(x):

δ(x) = -w·x·(L³ - 3·L·x² + 2·x³)/(48·E·I)

(negative = downward)

📐 Support Reactions

V_A: - kN

V_B: - kN

At x = 1.5m:

V(x): - kN

M(x): - kN⋅m

δ(x): - mm

Shear Force Diagram

Shear force distribution along beam length

Bending Moment Diagram

Bending moment distribution along beam length

Deflection Diagram

Beam deflection along length (mm)

Propped Beam with Concentrated Load

Geometry Diagram
📋 Mathematical Formulas

Distance Parameters:

b = L - a

Support Reactions:

V_A = P·b²·(a + 2·L)/(2·L³)

V_B = P·a·(3·L² - a²)/(2·L³)

Shear Force V(x):

if(0 ≤ x ≤ a) → V_A

if(x > a) → -V_B

Bending Moment M(x):

if(0 ≤ x ≤ a) → V_A·x

if(x > a) → V_A·x - P·(x - a)

Deflection δ(x):

if(0 ≤ x ≤ a) → -P·b²·x·(3·a·L² - 2·L·x² - a·x²)/(12·E·I·L³)

if(x > a) → -P·a·(L - x)²·(3·L²·x - a²·x - 2·a²·L)/(12·E·I·L³)

(negative = downward)

📐 Support Reactions

V_A: - kN

V_B: - kN

At x = 1.5m:

V(x): - kN

M(x): - kN⋅m

δ(x): - mm

Shear Force Diagram

Shear force distribution along beam length

Bending Moment Diagram

Bending moment distribution along beam length

Deflection Diagram

Beam deflection along length (mm)

Beam Fixed at Both Ends with Uniform Load

Geometry Diagram
📋 Mathematical Formulas

Support Reactions:

V_A = w·L/2

V_B = w·L/2

Shear Force V(x):

V(x) = w·(L/2 - x)

Bending Moment M(x):

M(x) = w·(6·L·x - L² - 6·x²)/12

Deflection δ(x):

δ(x) = -w·x²·(L - x)²/(24·E·I)

(negative = downward)

📐 Support Reactions

V_A: - kN

V_B: - kN

At x = 1.5m:

V(x): - kN

M(x): - kN⋅m

δ(x): - mm

Shear Force Diagram

Shear force distribution along beam length

Bending Moment Diagram

Bending moment distribution along beam length

Deflection Diagram

Beam deflection along length (mm)

Beam Fixed at Both Ends with Concentrated Load

Geometry Diagram
📋 Mathematical Formulas

Distance Parameters:

b = L - a

Support Reactions:

V_A = P·b²·(3·a + b)/L³

V_B = P·a²·(a + 3·b)/L³

Shear Force V(x):

if(0 ≤ x ≤ a) → V_A

if(x > a) → -V_B

Bending Moment M(x):

if(0 ≤ x ≤ a) → V_A·x - P·a·b²/L²

if(x > a) → V_B·(L - x) - P·a²·b/L²

End Moments:

M_A = -P·a·b²/L²

M_B = -P·a²·b/L²

Deflection δ(x):

if(0 ≤ x ≤ a) → -(-V_A·x³/(6·E·I) - M_A·x²/(2·E·I))

if(x > a) → -(-V_A·x³/(6·E·I) - M_A·x²/(2·E·I) + P·(x - a)³/(6·E·I))

(negative = downward)

📐 Support Reactions

V_A: - kN

V_B: - kN

At x = 1.5m:

V(x): - kN

M(x): - kN⋅m

δ(x): - mm

Shear Force Diagram

Shear force distribution along beam length

Bending Moment Diagram

Bending moment distribution along beam length

Deflection Diagram

Beam deflection along length (mm)

Beam Fixed at Both Ends with Load Increasing Uniformly to One End

Geometry Diagram
📋 Mathematical Formulas

Support Reactions:

V_A = 3·w·L/20

V_B = 7·w·L/20

End Moments:

M_A = -w·L²/30

M_B = -w·L²/20

Shear Force V(x):

V(x) = w·(3·L² - 10·x²)/(20·L)

Bending Moment M(x):

M(x) = -w·(2·L³ - 9·L²·x + 10·x³)/(60·L)

Deflection δ(x):

δ(x) = -(-V_A·x³/(6·E·I) - M_A·x²/(2·E·I) + w·x⁵/(120·E·I·L))

(negative = downward)

📐 Support Reactions

V_A: - kN

V_B: - kN

At x = 1.5m:

V(x): - kN

M(x): - kN⋅m

δ(x): - mm

Shear Force Diagram

Shear force distribution along beam length

Bending Moment Diagram

Bending moment distribution along beam length

Deflection Diagram

Beam deflection along length (mm)

Single Span Beam with Overhang - Uniform Load

Geometry Diagram
📋 Mathematical Formulas

Support Reactions:

V_A = w·(L² - a²)/(2·L)

V_Bl = w·a (L-side)

V_Br = w·(L² + a²)/(2·L) (R-side)

V_B = V_Bl + V_Br

Shear Force V(x):

if(0 ≤ x ≤ L) → V_A - w·x

if(x > L) → w·(a - (x - L))

Bending Moment M(x):

if(0 ≤ x ≤ L) → w·x·(L² - a² - x·L)/(2·L)

if(x > L) → -w·(a - (x - L))²/2

Deflection δ(x):

if(0 ≤ x ≤ L) → -w·x·(L⁴ - 2·L²·x² + L·x³ - 2·a²·L² + 2·a²·x²)/(24·E·I·L)

if(x > L) → -w·(x - L)·(4·a²·L - L³ + 6·a²·(x - L) - 4·a·(x - L)² + (x - L)³)/(24·E·I)

(negative = downward)

📐 Support Reactions

V_A: - kN

V_B: - kN

At x = 3m:

V(x): - kN

M(x): - kN⋅m

δ(x): - mm

Shear Force Diagram

Shear force distribution along beam length

Bending Moment Diagram

Bending moment distribution along beam length

Deflection Diagram

Beam deflection along length (mm)