COMPOSITE BEAM DESIGN CALCULATOR

Steel-Concrete Composite Beam Design
Back to Home

COMPOSITE BEAM DESIGN CALCULATOR

Steel-Concrete Composite Beam Design

INPUT DATA

Beam Geometry

L = m   Span of the simply supported beam

S = m   Beam spacing

Steel Beam Properties (H-Section)

D = mm   Overall depth of steel beam

bf = mm   Flange width

tf = mm   Flange thickness

tw = mm   Web thickness

As = cm²   Steel section area

py = MPa   Design strength of structural steel (S355)

Es = MPa   Steel modulus of elasticity

Figure 1: Geometry

Geometry Diagram

Composite Beam Dimensions

Concrete Slab Properties

hc = mm   Total slab depth (decking + concrete)

tconc = mm   Concrete topping thickness (above deck)

Be = mm   Effective breadth of concrete flange

fcu = MPa   Concrete cube compressive strength (C30)

γc =   Partial safety factor for concrete

γconc_wt = kN/m³   Concrete density

Decking Properties

hd = mm   Decking height

wd = kN/m²   Decking self-weight

Shear Connector Properties (Headed Studs)

dstud = mm   Stud diameter

hstud = mm   Stud height

fu_stud = MPa   Stud ultimate strength (Grade 450)

γv =   Partial safety factor for shear connectors

nstuds =   Provided number of studs

Loading (Characteristic values)

gk_fin = kN/m²   Finishes

qk = kN/m²   Imposed load

Partial Safety Factors for Loads

γf_g =   Dead load factor

γf_q =   Imposed load factor

CALCULATED PROPERTIES

dw = D - 2·tf = 378.2 mm   Clear web depth

Is = 31234.5 cm⁴   Moment of inertia for steel section

gk_slab = 5.4 kN/m   Slab self-weight (excluding decking)

wg_k = 8.24 kN/m   Total characteristic dead load per meter

wq_k = 12.0 kN/m   Total characteristic imposed load per meter

ULS: PLASTIC MOMENT CAPACITY

Effective Width of Concrete Flange

be = min(L/4; S) = 2.5 m   Effective width

Aconc = be·tconc = 187500 mm²   Effective concrete area

fcd = fcu/γc = 20.0 MPa   Design strength of concrete

Nc = 0.85·fcd·Aconc = 3187.5 kN   Concrete compression force capacity

Ns = As·py = 3503.9 kN   Full steel tension force

a = Ns/(0.85·fcd·be)   Depth of concrete stress block
z = D/2 + tconc - a/2   Lever arm
(N_c ≥ N_s)
' Case 1: PNA in concrete slab
  M_p = N_s*z
  "Check_PNA = In concrete slab"
(N_c < N_s)
' Case 2: PNA in steel beam
  F_c = N_c' Compression in concrete
  y_pna = (N_s - N_c)/(2*t_w*p_y) + (D - 2*t_f)/2' Depth of PNA relative to top of web
  M_p = F_c*(D/2 + t_conc - a/2) + p_y*A_s*(y_pna)' Simplified moment capacity (requires careful PNA calc)
  "Check_PNA = In steel beam"

Plastic Neutral Axis (PNA) Location: In concrete slab

Mp = 1234.5 kN·m   Plastic moment capacity

Flexural Resistance Check

M* = (γf_g·wg_k + γf_q·wq_kL²/8 = 287.7 kN·m   Factored design moment

Moment Check: M*/Mp = 0.233

ULS: SHEAR RESISTANCE

V* = (γf_g·wg_k + γf_q·wq_kL/2 = 115.1 kN   Factored design shear

Av = D·tw = 3535.7 mm²   Web shear area

Pv = 0.6·py·Av/1.1 = 691.8 kN   Shear capacity

Shear Check: V*/Pv = 0.166

ULS: SHEAR CONNECTION

α = 0.2·(hstud/dstud) + 0.8 = 1.85   Alpha factor

Qp = 127.2 kN   Stud shear resistance

Nreq_FSC = min(Ns; Nc)/Qp = 25.1   Required studs for FSC

Shear Connection Check: nstuds/Nreq_FSC = 0.797 PARTIAL SHEAR CONNECTION

SLS: DEFLECTION CHECKS

Stage 1: Construction (Steel Beam Only)

wconstr_k = 8.24 kN/m   Characteristic load during construction

δconstr = 5·wconstr_k·L⁴/(384·Es·Is) = 12.8 mm   Deflection during construction

δconstr_limit = L/180 = 55.6 mm   Construction deflection limit

Construction Deflection Check: δconstr/δconstr_limit = 0.230

Stage 2: Serviceability (Composite Action)

Ecm = 22200 MPa   Short-term concrete modulus

me = Es/Ecm = 9.23   Short-term modular ratio

Icomp = 89456.3 cm⁴   Composite section moment of inertia

δimp_short = 5·wq_k·L⁴/(384·Es·Icomp) = 5.5 mm   Short-term imposed deflection

δimp_limit = L/360 = 27.8 mm   Imposed deflection limit

Imposed Deflection Check: δimp_short/δimp_limit = 0.198

Long-term Deflection (Creep)

φ =   Creep coefficient (conservative)

me_lt = 27.69   Long-term modular ratio

Icomp_lt = 45623.1 cm⁴   Long-term composite moment of inertia

δfinal = 24.7 mm   Total final deflection

δfinal_limit = L/250 = 40.0 mm   Total deflection limit

Final Deflection Check: δfinal/δfinal_limit = 0.618

DESIGN SUMMARY

Capacities:

Design Flexural Capacity: 1234.5 kN·m

Design Shear Capacity: 691.8 kN

Required Studs for FSC: 25.1

Provided Studs: 20

Design Actions:

Factored Design Moment: 287.7 kN·m

Factored Design Shear: 115.1 kN

Construction Deflection: 12.8 mm

Final Deflection: 24.7 mm

RESULTS

ALL CHECKS PASSED - DESIGN IS ADEQUATE