ANGLE SECTION DESIGN CALCULATOR

Design according to EN1993-1-1
Back to Home

ANGLE SECTION DESIGN CALCULATOR (EN 1993-1-1:2022)

Design Approach Selection

Method =   Select design approach per EN 1990

INPUT DATA

Member Geometry (Equal Angle Section)

L = m   Member Length

b = mm   Leg Length

t = mm   Leg Thickness

Figure 1: Geometry

Geometry Diagram

L-Section Dimensions

Material Properties (EN 10025-2 S275)

E = MPa   Elastic Modulus

fy = MPa   Yield Strength

fu = MPa   Ultimate Tensile Strength

Actions (kN, kN/m)

Gk = kN/m   Permanent Actions (Dead Load)

Qk,1 = kN/m   Variable Actions (Live Load)

NG = kN   Permanent Axial Force

NQ = kN   Variable Axial Force

Partial Factors (EN 1990)

γG =   Partial Factor for Permanent Actions

γQ =   Partial Factor for Variable Actions

Imperfections and Buckling

α =   Imperfection Factor (Table 6.1 - Angles)

Ku =   Effective Length Factor (uncased)

Kc =   Effective Length Factor (cased)

DESIGN VALUES OF ACTIONS (EN 1990)

Ed = 1.35·Gk + 1.50·Qk,1 = 18.75 kN/m   Design Value of Distributed Load

NEd = 1.35·NG + 1.50·NQ = 67.50 kN   Design Value of Axial Force

ACTIONS

MEd = Ed·L²/8 = 21.09 kN·m   Design Value of Maximum Moment

VEd = Ed·L/2 = 28.13 kN   Design Value of Maximum Shear

SECTION PROPERTIES (EN 1993-1-1)

A = 2·b·tt² = 19.00 cm²   Cross-sectional Area

Iu = 271.30 cm⁴   Second Moment of Area (u-axis, major)

Iv = 63.58 cm⁴   Second Moment of Area (v-axis, minor)

Iz = 95.00 cm⁴   Second Moment of Area (z-axis, about centroid)

Wel,min = 25.71 cm³   Minimum Elastic Section Modulus

iu = 3.78 cm   Radius of gyration (u-axis)

iv = 1.83 cm   Radius of gyration (v-axis)

rmin = 1.83 cm   Minimum radius of gyration

ez = 3.70 cm   Distance from centroid to back of leg

DESIGN RESISTANCE CHECKS (EN 1993-1-1)

Tension Resistance (Clause 6.2.3)

Npl,Rd = A·fy/γM0 = 522.50 kN   Design Plastic Resistance in Tension

Nu,Rd = 0.6·A·fu/γM2 = 492.96 kN   Design Resistance for Net Section

Tension Check: NEd/Npl,Rd = 0.129

Compression Resistance (Clause 6.2.4)

Minor Axis Buckling (v-axis):

Lc,v = Ku·L·100 = 300.0 mm   Effective length (minor axis)

λ̄v = Lc,v/(iv·π)·√(fy/E) = 1.00

χv = 0.63   Reduction factor (v-axis)

Nb,Rd,v = χv·A·fy/γM1 = 329.18 kN   Buckling resistance (v-axis)

Major Axis Buckling (u-axis):

Lc,u = Ku·L·100 = 300.0 mm   Effective length (major axis)

λ̄u = Lc,u/(iu·π)·√(fy/E) = 0.48

χu = 0.89   Reduction factor (u-axis)

Nb,Rd,u = χu·A·fy/γM1 = 465.03 kN   Buckling resistance (u-axis)

Critical Axis: v-axis (minor)

Compression Check: NEd/Nb,Rd = 0.205

Bending Resistance (Clause 6.2.5)

Mc,Rd = Wel,min·fy/γM0 = 70.70 kN·m   Design Moment Resistance

Bending Check: MEd/Mc,Rd = 0.298

Combined Axial and Bending (Clause 6.2.9)

For angles with bending about minor axis and axial compression:

km = 0.49   Moment modification factor

δmod = 0.85   Modification factor

Interaction Check: NEd/Nb,Rd + km·MEd/(δmod·Mc,Rd) = 0.389

Shear Resistance (Clause 6.2.6)

Av = A/2 = 9.50 cm²   Shear Area

Vpl,Rd = Av·fy/(√3·γM0) = 151.11 kN   Design Shear Resistance

Shear Check: VEd/Vpl,Rd = 0.186

Local Buckling Check (Clause 6.2.3.2)

b/t = b/t = 10.00   Leg slenderness ratio

ε = √(235/fy) = 0.92   Material coefficient

Class 1 limit = 9·ε = 8.31   Class 1 limit

Class 2 limit = 10·ε = 9.23   Class 2 limit

Class 3 limit = 14·ε = 12.93   Class 3 limit

Section Classification: Class 2

Deflection Check (Serviceability)

δmax = 5·Gk·L⁴/(384·E·Iu) = 4.25 mm

δlimit = L/250 = 12.00 mm

Deflection Check: δmax/δlimit = 0.354

RESULTS

ALL CHECKS PASSED - DESIGN IS ADEQUATE