RHS DESIGN CALCULATOR

Design according to EN1993-1-1
Back to Home

RHS DESIGN CALCULATOR (EN 1993-1-1:2022)

Design Approach Selection

Method =   Select design approach per EN 1990

INPUT DATA

Member Geometry (Rectangular Hollow Section)

L = m   Member Length

h = mm   Section Height (Outer)

b = mm   Section Width (Outer)

t = mm   Wall Thickness

Figure 1: Geometry

Geometry Diagram

RHS-Section Dimensions

Material Properties (EN 10210 S355)

E = MPa   Elastic Modulus

fy = MPa   Yield Strength

fu = MPa   Ultimate Tensile Strength

Actions (kN, kN/m)

Gk = kN/m   Permanent Actions (Dead Load)

Qk,1 = kN/m   Variable Actions (Live Load)

NG = kN   Permanent Axial Force

NQ = kN   Variable Axial Force

Partial Factors (EN 1990)

γG =   Partial Factor for Permanent Actions

γQ =   Partial Factor for Variable Actions

Imperfections and Buckling

α =   Imperfection Factor (Table 6.1 - RHS)

Ky =   Effective Length Factor (y-y axis)

Kz =   Effective Length Factor (z-z axis)

DESIGN VALUES OF ACTIONS (EN 1990)

Ed = 1.35·Gk + 1.50·Qk,1 = 69.50 kN/m   Design Value of Distributed Load

NEd = 1.35·NG + 1.50·NQ = 306.00 kN   Design Value of Axial Force

ACTIONS

MEd,y = Ed·L²/8 = 313.13 kN·m   Design Moment (Strong Axis)

MEd,z = kN·m   Design Moment (Weak Axis)

VEd = Ed·L/2 = 208.50 kN   Design Value of Maximum Shear

SECTION PROPERTIES (EN 1993-1-1)

hi = h − 2·t = 184 mm   Inner Height

bi = b − 2·t = 84 mm   Inner Width

A = 2·t·(h + b − 2·t) = 43.52 cm²   Cross-sectional Area

Iy = 2591.25 cm⁴   Second Moment of Area (strong axis)

Iz = 959.58 cm⁴   Second Moment of Area (weak axis)

Wel,y = 259.13 cm³   Elastic Section Modulus (strong axis)

Wel,z = 191.92 cm³   Elastic Section Modulus (weak axis)

Wpl,y = 325.00 cm³   Plastic Section Modulus (strong axis)

Wpl,z = 250.00 cm³   Plastic Section Modulus (weak axis)

iy = 7.72 cm   Radius of gyration (strong axis)

iz = 4.69 cm   Radius of gyration (weak axis)

DESIGN RESISTANCE CHECKS (EN 1993-1-1)

Tension Resistance (Clause 6.2.3)

Npl,Rd = A·fy/γM0 = 1544.96 kN   Design Plastic Resistance in Tension

Nu,Rd = 0.6·A·fu/γM2 = 1065.38 kN   Design Resistance for Net Section

Tension Check: NEd/Npl,Rd = 0.198

Compression Resistance (Clause 6.2.4)

Strong Axis (y-y):

λ̄y = Ky·L/(iy·π)·√(fy/E) = 0.88

χy = 0.71   Reduction factor (y-y)

Nb,Rd,y = χy·A·fy/γM1 = 1096.92 kN   Buckling resistance (y-y)

Weak Axis (z-z):

λ̄z = Kz·L/(iz·π)·√(fy/E) = 0.59

χz = 0.84   Reduction factor (z-z)

Nb,Rd,z = χz·A·fy/γM1 = 1297.77 kN   Buckling resistance (z-z)

Critical Axis: y-y axis

Compression Check: NEd/Nb,Rd = 0.279

Bending Resistance (Clause 6.2.5)

Strong Axis (y-y):

Mc,Rd,y = Wpl,y·fy/γM0 = 1153.75 kN·m   Design moment resistance (y-y)

Weak Axis (z-z):

Mc,Rd,z = Wpl,z·fy/γM0 = 887.50 kN·m   Design moment resistance (z-z)

Bending Check (y-y): MEd,y/Mc,Rd,y = 0.271

Combined Axial and Bending (Clause 6.2.9)

MN,y,Rd = Mc,Rd,y·(1 − NEd/Npl,Rd) = 924.69 kN·m   Reduced moment resistance (y-y)

MN,z,Rd = Mc,Rd,z·(1 − NEd/Npl,Rd) = 711.98 kN·m   Reduced moment resistance (z-z)

Interaction Check: NEd/Nb,Rd + MEd,y/MN,y,Rd = 0.617

Shear Resistance (Clause 6.2.6)

Av = 2·h·t/√3 = 18.48 cm²   Shear Area

Vpl,Rd = Av·fy/γM0 = 656.04 kN   Design Shear Resistance

Shear Check: VEd/Vpl,Rd = 0.318

Local Buckling Check (Clause 6.2.3.2)

c/t = (h − 2·t)/t = 23.00   Web slenderness ratio

ε = √(235/fy) = 0.81   Material coefficient

Class 1 limit = 33·ε = 26.73   Class 1 limit

Class 2 limit = 38·ε = 30.78   Class 2 limit

Class 3 limit = 42·ε = 34.02   Class 3 limit

Section Classification: Class 1

Deflection Check (Serviceability)

δmax = 5·Gk·L⁴/(384·E·Iy) = 14.85 mm

δlimit = L/250 = 24.00 mm

Deflection Check: δmax/δlimit = 0.619

RESULTS

ALL CHECKS PASSED - DESIGN IS ADEQUATE