HKCoP 2013 PUNCHING SHEAR CHECK

1.0 INPUT DATA

Material Properties

fcu = MPa   Characteristic concrete cube strength

fck = 0.8×fcu = 32.0 MPa   Concrete characteristic cylinder strength

fy = MPa   Reinforcement characteristic strength

γc =   Partial safety factor for concrete

γs =   Partial safety factor for reinforcement

Geometric Properties

h = mm   Slab overall thickness

c = mm   Concrete cover

φb = mm   Slab main bar diameter

c1 = mm   Column dimension C1

c2 = mm   Column dimension C2

ρl = %   Flexural reinforcement ratio

VEd = kN   Design shear force from analysis

Column Type Selection

Column Type =   Select column location

2.0 CALCULATIONS

2.1 Effective Depths

Effective depth in X-direction (assume 20mm rebar)

deff,x = hc − 0.5×φb
deff,x = 150 - 30 - 0.5×20 = 110.00 mm

Effective depth in Y-direction

deff,y = hc − 1.5×φb
deff,y = 150 - 30 - 1.5×20 = 90.00 mm

Average effective depth

deff = (deff,x + deff,y)/2
deff = (110.00 + 90.00)/2 = 100.00 mm

2.2 Column Parameters

Internal Column Parameters

β = 1.15   Enhancement factor for internal column
u0 = 2×(c1 + c2)   Perimeter at column face
u0 = 2×(300 + 300) = 1200.00 mm
u1 = 2×(c1 + c2) + 4×π×deff   Basic control perimeter
u1 = 2×(300 + 300) + 4×π×100.00 = 2256.64 mm

2.3 Check max shear stress at column face (u₀)

Design concrete strength

fcd = fck/γc
fcd = 32.0/1.5 = 21.33 MPa

Conversion factor Eurocode 2

αcc = 1

Max shear resistance

vRd,max = 0.4×(1 − (fck/1MPa)/250)×αcc×fcd
vRd,max = 0.4×(1 − 32/250)×1×21.33 = 7.49 MPa

Applied shear stress

vEd,max = β×VEd/(u0×deff)
vEd,max = 1.15×200×10³/(1200.00×100.00) = 1.917 MPa

Maximum Stress Check

check_max_stress = PASS   (vEd,max = 1.917vRd,max = 7.49 MPa)

2.4 Check shear stress at basic control perimeter (u₁)

Size effect factor

k = min(2.0; 1 + √(200/(deff/1mm)))
k = min(2.0; 1 + √(200/100.00)) = 2.414

Minimum shear strength

vmin = 0.035×k3/2×√(fck/1MPa)×1MPa
vmin = 0.035×2.414³ᐟ²×√32 = 0.485 MPa

Shear resistance of concrete

vRd,c = 0.18/γc×k×(100×ρl×fck/1MPa)1/3×1MPa
vRd,c = 0.18/1.5×2.414×(100×1×32)¹ᐟ³ = 0.485 MPa
(Take vmin as minimum requirement)

Applied shear stress at basic perimeter

vEd,u1 = β×VEd/(u1×deff)
vEd,u1 = 1.15×200×10³/(2256.64×100.00) = 1.020 MPa

Basic Perimeter Check

check_basic_perimeter = SHEAR REINFORCEMENT REQUIRED   (vEd,u1 = 1.020 > vRd,c = 0.485 MPa)

2.5 Design Punching Shear Reinforcement

Effective design strength of reinforcement

fywd,ef = min((fy/1MPa)/γs; 250 + 0.25×(deff/1mm))×1MPa
fywd,ef = min(500/1.15; 250 + 0.25×100.00) = 434.78 MPa

Maximum radial spacing

sr = 0.75×deff
sr = 0.75×100.00 = 75.00 mm

Required area of shear reinforcement

Asw,required = max(0mm²; (vEd,u1vRd,csr×u1/(1.5×fywd,ef))
Asw,required = (1.020 - 0.485)×75.00×2256.64/(1.5×434.78) = 490.65 mm²

*** OUTPUT SUMMARY ***

Design Summary

Column Type = Internal

Enhancement Factor β = 1.15

Effective depth deff = 100.00 mm

Perimeter at column face u0 = 1200.00 mm

Basic control perimeter u1 = 2256.64 mm

Max shear resistance vRd,max = 7.49 MPa

Applied max shear stress vEd,max = 1.917 MPa

Max stress check: PASS

Concrete shear resistance vRd,c = 0.485 MPa

Applied shear stress vEd,u1 = 1.020 MPa

Basic perimeter check: SHEAR REINFORCEMENT REQUIRED

Required shear reinforcement Asw,required = 490.65 mm²

RESULTS

DESIGN REQUIRES SHEAR REINFORCEMENT