ANGLE DESIGN CALCULATOR (AISC 360-22)

Design Method Selection

Method =   Select design methodology

INPUT DATA

Member Geometry (Angle-Section)

L = ft   Member Length

b1 = in   First Leg Width

b2 = in   Second Leg Width

t = in   Leg Thickness

Figure 1: Geometry

Geometry Diagram

L-Section Dimensions

Material Properties (ASTM A36)

E = ksi   Elastic Modulus

Fy = ksi   Yield Strength

Fu = ksi   Ultimate Tensile Strength

Axial Loads (Tension Positive, Compression Negative)

ND = kips   Dead Load Axial Force

NL = kips   Live Load Axial Force

Bending Loads

wD = klf   Dead Load (Uniformly Distributed)

wL = klf   Live Load (Uniformly Distributed)

PD = kips   Dead Load (Point Load at Midspan)

PL = kips   Live Load (Point Load at Midspan)

End Restraints

Kmin =   Effective Length Factor (Minimum)

LOAD COMBINATIONS (AISC 360-22)

LRFD Load Factors:

wu = 1.2·wD + 1.6·wL = 1.56 klf   Factored Distributed Load

Pu = 1.2·PD + 1.6·PL = 22.00 kips   Factored Point Load

Nu = 1.2·ND + 1.6·NL = 0.00 kips   Factored Axial Force

ASD Load Factors:

wa = wD + wL = 0.90 klf   Allowable Distributed Load

Pa = PD + PL = 15.00 kips   Allowable Point Load

Na = ND + NL = 0.00 kips   Allowable Axial Force

ACTIONS

Mmax = w·L²/8 + P·L/4 = 50.25 kip-ft   Maximum Design Moment

Vmax = w·L/2 + P/2 = 11.25 kips   Maximum Design Shear

SECTION PROPERTIES

Ag = b1·t + b2·tt² = 4.75 in²   Gross Area

Ix = 21.8 in⁴   Second Moment of Area (x-axis through centroid)

Iy = 12.5 in⁴   Second Moment of Area (y-axis through centroid)

Ixy = 15.3 in⁴   Product of Inertia

Imax = 31.2 in⁴   Maximum Principal Moment of Inertia

Imin = 3.1 in⁴   Minimum Principal Moment of Inertia

θp = 32.5 deg   Principal Axis Angle

Sx = 6.2 in³   Elastic Section Modulus (x-axis)

Sy = 4.3 in³   Elastic Section Modulus (y-axis)

rx = 2.14 in   Radius of gyration (x-axis)

ry = 1.62 in   Radius of gyration (y-axis)

rmin = 0.81 in   Minimum radius of gyration (about principal axis)

DESIGN CHECKS (AISC 360-22)

Tension Strength (Chapter D)

Ag = 4.75 in²

Pn = Fy·Ag = 171.0 kips   Nominal Tension Capacity

φt = 0.90   Resistance Factor (LRFD)

φtPn = 153.9 kips   Design Tension Strength (LRFD)

Pn/Ωt = 102.4 kips   Allowable Tension Strength (ASD)

Tension Check: Tensionratio = |NφtPn−1 = 0.000

Compression Strength (Chapter E)

Lc = Kmin·L·12 = 240 in   Effective Length

rmin = 0.81 in   Minimum Radius of Gyration

λ = Lc/rmin = 296.3   Slenderness Parameter

Fe = π²·E/λ² = 0.33 ksi   Euler Buckling Stress

Fcr = 0.877·Fe = 0.29 ksi   Critical Buckling Stress

Pn = Fcr·Ag = 1.4 kips   Nominal Compression Capacity

φcPn = 1.3 kips   Design Compression Strength (LRFD)

Pn/Ωc = 0.8 kips   Allowable Compression Strength (ASD)

Compression Check: Compressionratio = |NφcPn−1 = 0.000

Bending Strength (Chapter F)

Mn = Fy·Smax = 93.8 kip-ft   Nominal Moment Capacity (Strong Axis)

φb = 0.90   Resistance Factor (LRFD)

φbMn = 70.3 kip-ft   Design Moment Strength (LRFD)

Bending Check: Bendingratio = Mmax/(φbMn) = 0.715

Combined Axial and Bending (Chapter H)

Pu/(φcPn) = 0.000

Mu/(φbMn) = 0.715

Interaction Check: Interactionratio = Pu/(φcPn) + Mu/(φbMn) = 0.715

Shear Strength (Chapter G)

Av = bmax·t = 3.00 in²   Shear Area

Vn = 0.6·Fy·Av = 64.8 kips   Nominal Shear Strength

φvVn = 58.3 kips   Design Shear Strength (LRFD)

Shear Check: Shearratio = Vmax/(φvVn) = 0.193

Deflection Check (Serviceability)

δmax = 5·wL·L⁴/(384·E·Imax) + PL·L³/(48·E·Imax) = 0.54 in

δlimit = L/360 = 0.67 in

Deflection Check: Deflectionratio = δmax/δlimit = 0.81

Compact Section Check (AISC Section B4)

λpf = 0.38·√(E/Fy) = 9.6   Limiting λ for compact flange

λpl = 0.56·√(E/Fy) = 14.1   Limiting λ for compact leg

λ1 = b1/t = 12.00   Slenderness ratio (first leg)

λ2 = b2/t = 8.00   Slenderness ratio (second leg)

Section Classification: Compact

RESULTS

ALL CHECKS PASSED - DESIGN IS ADEQUATE